May 2017

5505 Fernbank Road Blackstone Phases 4-8

Transportation Impact Study

5505 Fernbank Road Blackstone

Phases 4-8

Transportation Impact Study

prepared for:
Mattamy Homes
50 Hines Road, Suite 100
Ottawa, ON K2K 2M5
Cardel Homes
301 Moodie Drive, Suite 100
Ottawa, ON, K2H 9C4
prepared by:
\section*{PAREDNE}
1223 Michael Street
Suite 100
Ottawa, ON K1J 7T2

May 18, 2017

Table of Contents

1. INTRODUCTION 1
1.1. CONTEXT. 3
2. EXISTING CONDITIONS 3
2.1. STUDY AREA ROAD NETWORK 3
2.2. TRANSIT NETWORK 4
2.3. PEDESTRIAN \& CYCLING NETWORK 4
2.4. COLLISION REPORTS 5
2.5. EXISTING TRAFFIC OPERATIONS 5
3. DEMAND FORECASTING 7
3.1. BACKGROUND TRAFFIC GROWTH. 7
3.2. SITE TRIP GENERATION 7
3.3. VEHICLE TRAFFIC DISTRIBUTION AND ASSIGNMENT 8
3.4. PROJECTED TRAFFIC VOLUMES 9
4. FUTURE TRAFFIC OPERATIONS 12
4.1. 2025 FUTURE BACKGROUND CONDITIONS 12
4.2. 2025 TOTAL FUTURE CONDITIONS 12
4.3. 2030 FUTURE BACKGROUND CONDITIONS 13
4.4. 2030 TOTAL FUTURE CONDITIONS 14
5. TRANSPORTATION DEMAND MANAGEMENT 14
6. CONCLUSIONS 15
List of Figures
Figure 1: Local Site Context 1
Figure 2: Proposed Site Plan 2
Figure 3: Existing Transit Network 4
Figure 4: Cycling Network5
Figure 5: Existing Peak Hour Traffic Volumes7
Figure 6: Future Background Traffic (2025) 9
Figure 7: Future Background Traffic (2030) 10
Figure 8: Site Generated Traffic Volumes (Full Build-Out) 10
Figure 9: Future Total Traffic (2025) 11
Figure 10: Future Total Traffic (2030) 11
List of Tables
Table 1: Intersection Operational Analysis 2017 Existing Conditions 6
Table 2: Proposed Land Uses 8
Table 3: South Nepean Existing Mode Share 8
Table 4: Site Trip Generation (Full Build-Out) 8
Table 5: Traffic Distribution 8
Table 6: Intersection Operational Analysis 2025 Future Background Conditions 12
Table 7: Intersection Operational Analysis 2025 Future Traffic Conditions 13
Table 8: Intersection Operational Analysis 2030 Future Background Conditions 13
Table 9: Intersection Operational Analysis 2030 Future Traffic Conditions 14

List of Appendices

Appendix A - Terms of Reference
Appendix B - Dawson Transportation Brief and Abbott Fernbank Phase 4, Excerpt
Appendix C - Cope Road Cross-Section (Typical)
Appendix D - Traffic Data
Appendix E - Existing Conditions Analysis
Appendix F - Site Trip Generation
Appendix G - 2025 Future Background Analysis
Appendix H - 2025 Total Future Analysis
Appendix I - Left-turn Lane Warrant and Traffic Signal Warrant Analysis
Appendix J - 2030 Future Background Analysis
Appendix K - 2030 Total Future Analysis

Blackstone Transportation Impact Study

1. INTRODUCTION

This study has been prepared to support a Draft Plan of Subdivision application for Mattamy Homes' and Cardel Homes' proposed developments at 5505 Fernbank Road, referred to as the Blackstone South Development. The proposed development includes single detached and townhome style houses. The site will be constructed in several phases, but is anticipated to be built out quickly and multiple phases will be constructed concurrently. The subject site connects at several points to the adjacent developments as well as the adjacent road network.

Figure 1 shows the site location and the nearby road network. Figure 2 shows the proposed site plan.
Figure 1: Local Site Context

Consistent with the City of Ottawa's 2006 Transportation Impact Assessment Guidelines (TIA Guidelines), a Transportation Impact Study (TIS) is required to support the subject development application. The following horizons will be considered in the demand forecasting and operational analysis, 2017 (Existing Conditions), 2025 (Full Build-out, assumed), and 2030 (Full build-out plus 5 years).

Prior to commencement of this study a pre-consultation / scoping e-mail was sent to City Staff for discussion / approval. E-mail correspondence with City Staff has been included as Appendix A.

PARSONS

1.1. CONTEXT

The development is part of the Fernbank Community, located within the West Urban Community of the City of Ottawa. The Fernbank Community was the subject of a Community Design Plan (CDP) in 2006. The CDP outlines the planning context and planning principles that influence the design and construction of the Fernbank Community. Through this planning process the outline of the road network was established.

A Transportation Brief has been completed for 570 Hazeldean Road, Mattamy's development to the north of the subject development. This TB, completed in 2013, outlined the traffic generated by the proposed development. The previous study assumes that the development would be fully built-out in 2021. It is assumed that this build-out horizon has remained unchanged.

A Transportation Impact Analysis is underway for the Abbott-Fernbank Holdings to the east of the subject development, referred to as Abbott Fernbank Phase 4. This TIA, to be completed in 2017, will outline the traffic generated by the proposed development. This study assumes that development would be fully built-out in 2021. This information has been provided by the author of the Abbott - Fernbank study in advance of the submission.

Appendix B contains excerpts of the Dawson Transportation Brief and Abbott Fernbank Phase 4, detailing the site generated trips.

As no other development applications were indicated by the City Staff to be pending at the time of this study, it is assumed that other developments would be fully built out beyond the full build out horizon of 5505 Fernbank Road.

2. EXISTING CONDITIONS

2.1. STUDY AREA ROAD NETWORK

The Study Area road network is summarized below:
Fernbank Road is an east-west arterial road that runs between Dwyer Hill Road and Eagleson Road. Fernbank Road has a two-lane undivided rural cross section with gravel shoulders. The posted speed limit is $80 \mathrm{~km} / \mathrm{h}$ along the frontage of 5505 Fernbank Road, it is assumed that this speed limit would be reduced to $60 \mathrm{~km} / \mathrm{h}$ by the completion of the subject development. It is identified as a transit priority corridor with isolated measures (City of Ottawa Transportation Master Plan (TMP) 2013, Ultimate Network) and widening has been proposed in the Network Concept Map 10 (TMP). The widening is not included in the affordable network and was therefore not considered in this study.

Robert Grant Avenue is a north-south arterial road that runs through the Fernbank Community. This road is currently only constructed from Fernbank Road to Abbot Street East, but will ultimately connect to the Palladium Drive Highway 417 interchange.

Cope Drive is an east-west collector road that is not currently continuous, but will be connected as part of the proposed development. This road connects to Eagleson Road east of the subject development and Robert Grant Avenue west of the subject development.

Rouncey Road is a north-south collector road that is not currently continuous, but would be connected as part of the proposed development. This road connects the northern part of the Fernbank Community to both Cope Drive and Fernbank Road.

2.2. TRANSIT NETWORK

OC Transpo Route 96 and 262 run along Fernbank Road, Route 96 and 92 run along Shea Road. Bus Route 167 currently serves the Blackstone community with a transit stop at Rouncey Road / Westphalian Avenue. The closest transit stop on Fernbank Road is located at Laird Street and on Shea Road, the Goulbourn Complex is the last stop. Figure 3 shows the transit routes through the Study Area.

Figure 3: Existing Transit Network

Accessed January 9, 2017

2.3. PEDESTRIAN \& CYCLING NETWORK

Sidewalks are provided within the immediate study area. The existing sidewalks connect Robert Grant Avenue to Abbott Street East and the residential area west of the site.

Cycle Tracks are provided on both sides of Robert Grant Avenue, which connects at the south to paved shoulders on Fernbank Road and the Trans-Canada Trail to the north.

A major pathway connection terminates at the roundabout at the intersection of Fernbank Road and Robert Grant Avenue which originates at the Trans Canada Trail. The Ottawa Pedestrian Plan (2013) does not identify any extension to this pathway.

The City of Ottawa's 2013 Cycling Plan identifies Fernbank Road as a Spine or Citywide-cycling route. Figure 4 illustrates the study area, and surrounding area, cycling network.

Figure 4: Cycling Network

A cross-section for Cope Road has been previously defined as part of the Abbot-Fernbank Lands and this cross-section will be carried through the subject development. The cross-section includes a multi-use pathway along the north side and a sidewalk is included along the south side. The typical cross-section has been included in Appendix C.

2.4. COLLISION REPORTS

Collision data was requested from the City of Ottawa for the intersections of Cope Drive at Robert Grant Avenue and Fernbank Road at Robert Grant Avenue for the most recent 3 years prior to the commencement of this study. However, no data was available for this intersection, and therefore it is inferred that no reportable collisions have occurred within the 3 years prior to this study.

2.5. EXISTING TRAFFIC OPERATIONS

To establish the baseline intersection operations an operational analysis of the existing traffic conditions has been undertaken for the study area intersection. No recent counts were available from the City of Ottawa. New turning movement counts were undertaken on Thursday February 16, 2017 and Tuesday February 21, 2017, these are summarized on Figure 5. Appendix D contains the detailed traffic data sheets.

To assess the peak hour traffic conditions at the existing roundabout a level of service analysis has been completed using the traffic analysis software Sidra. The key parameters used in the analysis include:

- Existing lane arrangements
- A value of 2% Heavy Vehicle volume was used
- Default values for all other inputs (as defined by Sidra)

PARSONS

To assess the peak hour traffic conditions at the signalized and unsignalized intersections a level of service analysis has been completed using Trafficware Synchro 9.1, which implements the methods of the 2000 Highway Capacity Manual. The key parameters used in the analysis include:

- A saturation flow rate of 1800 (as per the City of Ottawa TIA Guidelines)
- Default values for all other inputs (as defined by Synchro 9.1)

The results of the operational analysis are summarized in Table 1. The Sidra and Synchro analysis outputs are provided in Appendix E.

Table 1: Intersection Operational Analysis
2017 Existing Conditions

Intersection	Weekday AM Peak (PM Peak)					
	Critical Movement			Intersection		
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c
Fernbank Road/Robert Grant Avenue 1	A(A)	0.37(0.45)	EBT(WBT)	9.4(10.7)	A(A)	0.35(0.42)
Robert Grant Avenue/Cope Drive ${ }^{3}$	A(A)	5.2(4.3)	SB(SB)	5.0(4.3)	-	-
Note: 1- Signalized Intersection 2- Unsignalized Intersection 3- Roundabout Intersection						

The existing roundabout at Robert Grant Avenue and Cope Drive as well as the signalized intersection of Fernbank at Robert Grant Avenue were shown to operate with good overall levels of service and no critical movements. As a result, no mitigation measures are recommended.

PARSONS

Figure 5: Existing Peak Hour Traffic Volumes

3. DEMAND FORECASTING

3.1. BACKGROUND TRAFFIC GROWTH

To account for background growth along Fernbank Road and Robert Grant Avenue several background developments have been considered. All the developments considered are expected to reach full build-out prior to the 2025 horizon. To account for background growth beyond the study area, a 2% background growth rate per annum (compounded) has been applied. The background development traffic volumes were combined with the existing traffic volumes and the percent background growth to estimate the future background traffic for 2025 and 2030. Figure 6 shows the future background traffic volumes for the 2025 horizon. Figure 7 shows the future background traffic volumes for the 2030 horizon.

3.2. SITE TRIP GENERATION

The number of vehicle trips has been estimated, based on the proposed land uses, to project the impact of the proposed development on the surrounding road network. Table 2 documents the proposed land uses, the ITE Land Use Codes, and the independent variables that are being proposed for the Blackstone South Development.

PARSONS

Table 2: Proposed Land Uses

Land Use	Data Source	Independent Variable
Single-Family Detached Housing	ITE 210	423 Units
Residential Condominium / Townhouse	ITE 230	376 Units
Residential Condominium Block	ITE 220	156 Units
High School	ITE 530	1,916 Students
Elementary School	ITE 520	650 Students

The ITE Land Use Codes and independent variables described above were used to develop the baseline automobile trip generation. The baseline automobile trip generation is multiplied by 1.30 to estimate the number of peak hour person trips that could be generated by the proposed development. The 2011 NCR Household Origin - Destination Survey was reviewed to determine the mode share characteristics of the subject area, specifically, the Kanata - Stittsville Area. Table 3 documents the mode share based on the O-D survey.

Table 3: South Nepean Existing Mode Share

Travel Mode	Mode Share
Auto Driver	60%
Auto Passenger	15%
Transit	10%
Non-motorized	15%
Total Person Trips	100%

Table 4 summarizes the vehicle trip generation for the full build-out of the proposed development based on the foregoing assumptions. A full trip generation table is included in Appendix F.

Table 4: Site Trip Generation (Full Build-Out)

	AM Peak Hour					PM Peak Hour
	Inbound	Outbound	Total	Inbound	Outbound	Total
Net new Vehicle Trips	666	683	1,349	514	362	876

3.3. VEHICLE TRAFFIC DISTRIBUTION AND ASSIGNMENT

The vehicle traffic distribution and assignment was developed using the 2011 NCR Household Origin - Destination Survey. The resultant distribution is outlined in Table 5.

Table 5: Traffic Distribution

To/From	Distribution
North	40%
South	10%
East	40%
West	10%
Total	100%

Using these distributions and the access configuration, new site-generated trips were assigned to the study area intersections. Figure 8 shows the full build-out site generated traffic volumes.

PARSONS

3.4. PROJECTED TRAFFIC VOLUMES

The background traffic volumes were combined with the site traffic to determine the weekday AM and PM peak hour total traffic forecasts. The future total traffic volumes for the 2025 , and 2030 horizon years are shown in Figure 9, and Figure 10 respectively.

Figure 6: Future Background Traffic (2025)

PARSONS

Figure 7: Future Background Traffic (2030)

Figure 8: Site Generated Traffic Volumes (Full Build-Out)

PARSONS

Figure 9: Future Total Traffic (2025)

Figure 10: Future Total Traffic (2030)

4. FUTURE TRAFFIC OPERATIONS

4.1. 2025 FUTURE BACKGROUND CONDITIONS

A level of service analysis of the future background AM and PM peak hour operating conditions was undertaken using the same parameters as in the analysis of existing conditions. Table 6 summarizes the operational analysis for the projected 2025 future background conditions. Sidra analysis outputs are included in Appendix G.

Table 6: Intersection Operational Analysis
2025 Future Background Conditions

Intersection	Weekday AM Peak (PM Peak)					
	Critical Movement			Intersection		
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c
Fernbank Road/Robert Grant Avenue 1	A(A)	0.43(0.60)	EBT(WBT)	9.9(12.1)	A(A)	0.40(0.56)
Robert Grant Avenue/Cope Drive ${ }^{3}$	A(A)	5.3(5.2)	NB(NB)	5.2(5.0)	-	-
Note: 1- Signalized Intersection 2- Unsignalized Intersection 3- Roundabout Intersection						

The roundabout intersection of Robert Grant Avenue and Cope Drive, with the addition of the background developments, is projected to operate well, with Level of Service A (LOS A) during the AM and PM peak periods. The signalized intersection at Fernbank Road and Robert Grant Avenue is projected to operate at LOS B for the AM and PM peak periods.

4.2. 2025 TOTAL FUTURE CONDITIONS

A level of service analysis of the future AM and PM peak hour operating conditions, including the subject development, was undertaken using the same parameters as in the analysis of existing conditions, with the addition of the intersections of Rouncey Road at Cope Drive and Rouncey Road at Fernbank Road.

Table 7 summarizes the operational analysis for the projected 2025 total future conditions. Sidra and Synchro analysis outputs are included in Appendix H .

PARSONS

Table 7: Intersection Operational Analysis
2025 Future Traffic Conditions

Intersection	Weekday AM Peak (PM Peak)					
	Critical Movement			Intersection		
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c
Fernbank Road/Robert Grant Avenue 1	A(B)	0.50(0.65)	EBT(WBT)	10.3(12.8)	A(A)	0.47(0.60)
Rouncey Road/Fernbank Road ${ }^{2}$	E(E)	41.6(47.0)	SB(SB)	5.6(5.5)	-	-
Robert Grant Avenue/Cope Drive ${ }^{3}$	A(A)	5.7(5.4)	NB(NB)	5.5(5.2)	-	-
Rouncey Road / Cope Drive ${ }^{3}$	A(A)	8.9(6.8)	NB(NB)	8.5(6.1)	-	-
Note: 1- Signalized Intersection 2- Unsignalized Intersection 3- Roundabout Intersection						

The new unsignalized intersection at Fernbank Road and Rouncey Road will operate at LOS E during the AM and PM peak hour. The poor operation is due to the high through volumes along Fernbank Road. It should be noted that the through volumes on the east - west legs of the intersection operate with LOS A. A signal warrant was examined using OTM Book 12 methodology for a future intersection with future volumes. Using this methodology, a traffic control signal is not warranted at this location for the 2025 Total Future Conditions. The roundabout at Robert Grant Avenue and the newly added roundabout at Rouncey Road and Cope Drive is projected to operate at LOS A for both AM and PM peak periods. The signalized intersection at Fernbank Road and Robert Grant Avenue is projected to operate at LOS B in the AM and LOS C in the PM peak hour.

A left turn lane warrant was examined at Rouncey Road and Fernbank Road for the eastbound direction along Fernbank Road, and was found to be warranted. For the westbound direction along Fernbank a right turn lane was added to improve the conditions at the intersection of Fernbank Road and Rouncey Road as the right turn volumes were greater than 60 veh/h for both AM and PM peak periods. Appendix I documents the left turn lane warrant.

4.3. 2030 FUTURE BACKGROUND CONDITIONS

A level of service analysis of the 2030 future background AM and PM peak hour operating conditions was undertaken using the same parameters as in the analysis of 2025 future background conditions. Table 8 summarizes the operational analysis for the projected 2030 future background conditions. Sidra and Synchro analysis outputs are included in Appendix J.

Table 8: Intersection Operational Analysis
2030 Future Background Conditions

Intersection	Weekday AM Peak (PM Peak)					
	Critical Movement			Intersection		
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c
Fernbank Road/Robert Grant Avenue ${ }^{1}$	$B(B)$	0.61(0.68)	EBT(WBT)	11.6(13.4)	A(B)	0.56(0.64)
Robert Grant Avenue/Cope Drive ${ }^{3}$	A(A)	5.5(5.3)	NB(NB)	5.3(5.1)	-	-
Note: 1- Signalized Intersection 2- Unsignalized Intersection 3- Roundabout Intersection						

PARSONS

The roundabout at Robert Grant Avenue and Cope Drive is shown to operate well with LOS A and short delays in both the AM and PM peak hours. The signalized intersection at Fernbank Road and Robert Grant Avenue is shown to operate at LOS B for AM and PM peak periods.

4.4. 2030 TOTAL FUTURE CONDITIONS

A level of service analysis of the 2030 total future AM and PM peak hour operating conditions was undertaken using the same parameters as in the analysis of 2025 total future conditions. Table 9 summarizes the operational analysis for the projected 2030 total future conditions. Sidra and Synchro analysis outputs are included in Appendix K.

Table 9: Intersection Operational Analysis 2030 Future Traffic Conditions

Intersection	Weekday AM Peak (PM Peak)					
	Critical Movement			Intersection		
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c
Fernbank Road/Robert Grant Avenue 1	B(B)	0.63(0.69)	EBT(WBT)	11.9(13.7)	A(B)	0.58(0.64)
Rouncey Road/Fernbank Road ${ }^{2}$	F(F)	55.4(67.4)	SB(SB)	6.9(7.2)	-	-
Robert Grant Avenue/Cope Drive ${ }^{3}$	A(A)	5.9(5.5)	NB(NB)	5.7(5.3)	-	-
Rouncey Road/Cope Drive ${ }^{3}$	A(A)	8.9(6.8)	NB(NB)	8.5(6.1)	-	-
Note: 1- Signalized Intersection 2- Unsignalized Intersection 3- Roundabout Intersection						

With the addition of traffic from the full build-out of the proposed site, the roundabout at Robert Grant Avenue and Cope Drive will continue to operate at LOS A during both peak hours. The signalized intersection at Robert Grant Avenue and Fernbank Road will operate at LOS C with the addition of the site traffic.

Similar to 2025 total future conditions the unsignalized intersection of Rouncey Road and Fernbank Road will operate with poor LOS, and high delays. This is caused by the high volume of east/west traffic on Fernbank Road causing delays to the minor, southbound approach of the intersection. The east/west legs of the intersection are projected to operate with LOS A. Additionally, a signal warrant was examined using OTM Book 12 methodology for a future intersection with future volumes. Using the methodology, a traffic control signal is not warranted at this location for the 2030 Total Future Conditions.

5. TRANSPORTATION DEMAND MANAGEMENT

Transportation Demand Management (TDM) strategies have the potential to be an integral part of a planned development. For this site, the proximity of dedicated on-road cycling facilities will contribute to maximizing the bicycle mode split. As well, several other TDM measures could be considered to reduce vehicle use, including:

- Improving the quality and safety of pedestrian facilities, such as enhanced sidewalks/lighting
- Ride-sharing programs (e.g. community forum where residents can register/arrange carpooling or on-site parking can be reserved for VRTUCAR cars)
- Provide a transit information to encourage residents to utilize transit
- Develop a program to encourage both residents to have transit passes

TDM strategies are important in encouraging active modes of transportation to/from the site, further lessening the reliance on the private automobile.

PARSONS

6. CONCLUSIONS

The conclusions of the Transportation Impact Study are as follows:
a) The existing study area intersections have been shown to operate with a good overall LOS (LOS A) and minimal delays. No mitigation measures were required to address existing deficiencies.
b) It is projected that the site will generate 1,349 and 876 net new auto trips in the AM and PM peak hours respectively (per Table 4: Site Trip Generation).
c) The analysis of 2025 and 2030 future background conditions (without site generated traffic) indicated that the roundabout intersection would operate with good LOS (LOS B or better) and minimal delays. No mitigation measures were required to address deficiencies as a result of the addition of background growth.
d) The analysis of 2025 and 2030 total future traffic forecasts (including site-generated traffic) showed that the roundabout at Robert Grant Avenue and Cope Drive would continue to operate with few delays and good LOS (LOS A), with the inclusion of the site-generated traffic. The signalized intersection at Robert Grant Avenue will continue to operate well, with some delays, and LOS B or better.
e) The internal intersection of Cope Drive at Rouncey Road is planned to be a roundabout. This intersection was analyzed as a single lane roundabout and was found to operate with good LOS (LOS A) with the proposed intersection configuration, and projected traffic volumes.
f) The new access intersection of Rouncey Road at Fernbank Road was analyzed as an unsignalized intersection with a stop control on the minor (southbound) leg. Left and right auxiliary turning lanes have been examined at this location. An eastbound right turn lane and a westbound left turn lane were found to be warranted. The access intersection was analyzed using the foregoing configuration. It was projected that the minor leg would operate with LOS F; however, this leg was shown to operate within theoretical capacity (i.e. v/c<1.0). A signal warrant was undertaken using the OTM Book 12 methodology. It was found that a traffic control signal was not warranted for either 2025 or 2030 total future conditions.

Upon approval of the traffic analysis contained herein, the following tasks will be undertaken:

- Functional design of the Cope Drive at Rouncey Road Roundabout
- Roadway Modification Approval for the intersection of Rouncey Road at Fernbank Road

It is anticipated that the study area intersections, with the noted mitigation measures, will operate acceptably. It is therefore recommended that, from a transportation perspective, the subject development be approved.

Prepared By

Matthew Mantle, EIT
Transportation Analyst

Reviewed By

Mark B. Crockford, P. Eng. Transportation Engineer

Appendix A

Scope Email

Blackstone TIA TOR

Transportation Impact Study
Background Growth

- Please forward any available TIA's for nearby developments that should be considered in our analysis
- 2% background growth rate, due to the number of developments in the area.

Study Area

- Rouncey Road (Street 1) at Fernbank Road
- Rouncey Road (Street 1) at Cope Drive (Street 2)
- Cope Drive and Robert Grant Avenue

Horizons

- It is anticipated that all 5 Phases will be fully built-out by 2025. As a result, the following horizons will be examined:
- 2017 Existing Conditions
- 2025 Full Build-out
- 2030 Full Build-out +5 years
- As this is a residential subdivision the AM / PM peak hours will be examined.

Transit and Active Modes should be included in the study.

Appendix B

Dawson Transportation Brief and Abbott Fernbank Phase 4

570 Hazeldean Road Transportation Brief

Figure 11 2021 Future

570 Hazeldean Road Transportation Brief

Figure 12 Future Intersection Configuration

P 3.23

Appendix C

Cope Road Sample Cross-Section

Appendix D

Traffic Data

Traffic Signal Timing
City of Ottawa, Transportation Services Department
Traffic Operations Unit

Intersection:	Main:	Fernbank	Side:	Robert Grant	
Controller:	ATC 3			TSD:	6827
Author:	Matth	Anderson		Date:	11-May-2017

Existing Timing Plans ${ }^{\dagger}$

	Plan	Ped Minimum Time		
	All Day 2	Walk	DW	$A+R$
Cycle	Free			
Offset	X			
EB Thru	min $=52.2$	-	-	4.6+1.6
WB Thru	min $=52.2$	7	10	4.6+1.6
SB Thru	max $=20.0$	7	17	3.3+2.7
WB Left	$\max =26.2$	-	-	4.6+1.6

Phasing Sequence ${ }^{\ddagger}$

Plan: 2

Notes: 1) During the first 5 seconds of the westbound phase, vehicles receive a straight green arrow preventing them from turning right across the cycle track and crosswalk. After 5 seconds, westbound traffic receives a green ball display.

Schedule

All the time

Time	Plan
all	2

Notes
\dagger : Time for each direction includes amber and all red intervals
\ddagger : Start of first phase should be used as reference point for offset
Asterisk (*) Indicates actuated phase
(fp): Fully Protected Left Turn
-............. Pedestrian signal

Turning Movement Count Summary, AM and PM Peak Hour Automobiles, Taxis, Ligh Trucks, Vans, SUV's, Flow Diagrams

Turning Movement Count
Heavy Vehicle Summary
Flow Diagram

Cope Drive \& Robert Grant Avenue (Roundabout)
Survey Date: Thursday, 16 February 2017
Weather: Overcast -9C am/-4C p Survey Duration:

	N/A - Road Not Open					Cope Dr.					Robert Grant Ave.					Robert Grant Ave.					
Time Period	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	LT	ST	RT	UT	S. Tot	G.Tot.
0700-0800	0	0	0	0	0	3	0	0	0	3	0	1	2	0	3	0	3	0	0	3	9
0800-0900	0	0	0	0	0	1	0	0	0	1	0	3	3	0	6	0	3	0	1	4	11
0900-1000	0	0	0	0	0	0	0	0	0	0	0	11	1	0	12	2	9	0	0	11	23
1130-1230	0	0	0	0	0	2	0	0	0	2	0	5	1	0	6	0	3	0	0	3	11
1230-1330	0	0	0	0	0	0	0	1	0	1	0	2	2	1	5	0	2	0	0	2	8
1500-1600	0	0	0	0	0	0	0	0	0	0	0	7	0	0	7	0	6	0	0	6	13
1600-1700	0	0	0	0	0	1	0	0	0	1	0	7	3	0	10	0	3	0	0	3	14
1700-1800	0	0	0	0	0	3	0	0	0	3	0	1	2	1	4	0	0	0	0	0	7
Totals	0	0	0	0	0	10	0	1	0	11	0	37	14	2	53	2	29	0	1	32	96

Start Time:
8 Hrs. Survey Hours:

0700
0700-1000, 1130-1330 \& 1500-1800

Pedestrian Crossings Summary and Flow Diagram

Cope Drive \& Robert Grant Avenue (Roundabout)
$\left.\begin{array}{c}\text { Pedestrian } \\ \text { Crossings }\end{array}\right]$

Cope Drive \& Robert Grant Avenue (Roundabout)

Survey Date: Thursday, 16 February 2017
Weather: Overcast -9C am/-4C p Survey Duration: 8 Hrs. Survey Hours:

0700
0700-1000, 1130-1330 \& 1500-1800

Time Period	West Side Crossing N/A - Road Not Open	East Side Crossing Cope Dr.	$\begin{aligned} & \text { Street } \\ & \text { Total } \end{aligned}$	South Side Crossing Robert Grant Ave.	North Side Crossing Robert Grant Ave.	$\begin{aligned} & \text { Street } \\ & \text { Total } \end{aligned}$	Grand Total
0700-0800	0	0	0	0	0	0	0
0800-0900	0	0	0	0	0	0	0
0900-1000	0	0	0	0	0	0	0
1130-1230	0	0	0	0	0	0	0
1230-1330	0	1	1	0	0	0	1
1500-1600	0	4	4	0	0	0	4
1600-1700	0	2	2	0	0	0	2
1700-1800	0	0	0	0	0	0	0
Totals	0	7	7	0	0	0	7

Start Time:

8 Hrs. Survey Hours:
Robert Grant Ave. Robert Grant Ave.
Northbound Southbound

			bound		Westbound																		
Time Period	LT	ST	RT	UT	$\begin{aligned} & \text { E/B } \\ & \text { Tot } \end{aligned}$	LT	ST	RT	UT	$\begin{aligned} & \text { W/B } \\ & \text { Tot } \end{aligned}$	Street Total	LT	ST	RT	UT	$\begin{aligned} & \text { N/B } \\ & \text { Tot } \end{aligned}$	LT	ST	RT	UT	$\begin{aligned} & \hline \text { S/B } \\ & \text { Tot } \end{aligned}$	Street Total	Grand Total
0700-0800	0	0	0	0	0	8	0	3	0	11	11	0	83	8	0	91	2	67	0	1	70	161	172
0800-0900	0	0	0	0	0	5	0	3	0	8	8	0	99	19	0	118	0	90	0	0	90	208	216
0900-1000	0	0	0	0	0	14	0	4	0	18	18	0	86	13	0	99	3	54	0	0	57	156	174
1130-1230	0	0	0	0	0	8	0	7	0	15	15	0	65	8	0	73	5	59	0	0	64	137	152
1230-1330	0	0	0	0	0	11	0	3	0	14	14	0	56	10	1	67	3	46	0	0	49	116	130
1500-1600	0	0	0	0	0	10	0	4	0	14	14	0	92	7	0	99	3	105	0		109	208	222
1600-1700	0	0	0	0	0	4	0	5	0	9	9	0	104	13	0	117	6	99	0	0	105	222	231
1700-1800	0	0	0	0	0	9	0	2	0	11	11	0	89	15	1	105	2	93	0	0	95	200	211
Totals	0	0	,	0	0	69	0	31	0	100	100	0	674	93	2	769	24	613	0	2	639	1408	1508

Equivalent 12 \& 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count
\Rightarrow Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts

Equivalent 12-hour vehicle volumes. These volumes are calculated by multiplying the 8-hour totals by the $8 \boldsymbol{\rightarrow 1 2}$ expansion factor of 1.39																							
Equ. 12 Hr	0	0	0	0	0	96	0	43	0	139	139	0	937	129	3	1069	33	852	0	3	888	1957	2096
Average daily 12-hour vehicle volumes. These volumes are calculated by multiplying the equivalent 12-hour totals by the AADT factor of: 0.9																							
AADT 12-hr	0	0	0	0	0	86	0	39	0	125	125	0	843	116	3	962	30	767	0	3	799	1761	1887
24-Hour AADT. These volumes are calculated by multiplying the average daily 12 -hour vehicle volumes by the $12 \boldsymbol{\epsilon} \mathbf{2 4}$ expansion factor of 1.31																							
AADT 24 Hr	0	0	0	0	0	113	0	51	0	164	164	0	1105	152	3	1260	39	1005	0	3	1047	2307	2471
AM Peak Hour Factor $\Rightarrow 0.78$																							
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	G.TOT
0815-0915	0	0	0	0	0	8	0	3	0	11	11	0	98	15	0	113	1	101	0	0	102	215	226
PM Peak Hour Factor $\Rightarrow 0.90$																							
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.tot	LT	ST	RT	UT	тот	LT	ST	RT	UT	TOT	s.tot	G.TOT
1630-1730	0	0	0	0	0	10	0	5	0	15	15	0	101	15	1	117	6	103	0	0	109	226	241

Comments

Robert Grant Avenue is open between Fernbank Road and Abbott Street (East). Cope Drive and Bobolink Ridge are not open west of Robert Grant Avenue and Abbott Street (East) is not open east of Robert Grant Avenue. Additionally, Robert Grant Avenue is not open north of Abbott Street (East).

Notes:

1. Includes all vehicle types except bicycles and electric scooters.
2. Expansion factors are not applied to turning movement counts if they are less than 8 -hours in duration.
3. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Disclaimer:

[^0]Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

Fernbank Road \& Robert Grant Avenue

Stittsville, ON

Turning Movement Count
Heavy Vehicle Summary Flow Diagram

Fernbank Road \& Robert Grant Avenue

Fernbank Road \& Robert Grant Avenue
Pedestrian
Crossings

Fernbank Road \& Robert Grant Avenue

Survey Date: Tuesday, 21 February 2017
Weather: Partly Cloudy/Overcast Survey Duration: 8 Hrs. Survey Hours:

0700
0700-1000, 1130-1330 \& 1500-1800

Time Period	West Side Crossing Fernbank Rd.	East Side Crossing Fernbank Rd.	$\begin{aligned} & \text { Street } \\ & \text { Total } \end{aligned}$	South Side Crossing N/A	North Side Crossing Robert Grant Ave.	$\begin{aligned} & \text { Street } \\ & \text { Total } \end{aligned}$	Grand Total
0700-0800	0	0	0	0	0	0	0
0800-0900	0	0	0	0	0	0	0
0900-1000	0	-n		- 0^{0}	0	0	0
1130-1230	0 No Pedestrians Observed				ed 0	0	0
1230-1330					0	0	0
1500-1600	0	0	0	0	0	0	0
1600-1700	0	0	0	0	0	0	0
1700-1800	0	0	0	0	0	0	0
Totals	0	0	0	0	0	0	0

Fernbank Road \& Robert Grant Avenue

Survey Date Weather:		Tuesday, 21 February 2017										Start Time: Survey Hours:					AADT Factor: 1000, 1130-1330 \& 1500-1800						1.0
	Fernbank Rd.					Fernbank Rd.					8 Hrs.	N/A					Robert Grant Ave.						
	Eastbound					Westbound						Northbound					Southbound						
Time Period	LT	ST	RT	UT	$\begin{array}{\|l\|} \hline \text { E/B } \\ \text { Tot } \end{array}$	LT	ST	RT	UT	$\begin{aligned} & \text { W/B } \\ & \text { Tot } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Street } \\ \text { Total } \end{array}$	LT	ST	RT	UT	$\begin{aligned} & \text { N/B } \\ & \text { Tot } \end{aligned}$	LT	ST	RT	UT	$\begin{array}{\|l\|} \hline \text { S/B } \\ \text { Tot } \end{array}$	$\begin{array}{\|c\|} \hline \text { Street } \\ \text { Total } \end{array}$	$\begin{array}{\|c\|} \hline \text { Grand } \\ \text { Total } \\ \hline \end{array}$
0700-0800	16	366	0		382	0	133	106		239	621	0	0	0			85	0	8		93	93	714
0800-0900	9	341			350	0	184	117		301	651	0	0				109	0	9		118	118	769
0900-1000	8	283	0		291	0	153	71		224	515	0	0	0			73	0	10	0	83	83	598
1130-1230	4	192	0		196	0	184	63		247	443	0	0	0			73	0	9		82	82	525
1230-1330	13	191	0		204	0	197	67		264	468	0	0	0			54	0	8	0	62	62	530
1500-1600	11	187	0		198	0	388	119		507	705	0	0	0			109	0	16	0	125	125	830
1600-1700	8	237	0		245	0	432	127		559	804	0	0	0			135	0	12	0	147	147	951
1700-1800	4	199	0		203	0	401	118		519	722	0	0	0			122	0	2	0	124	124	846
Totals	73	1996	0		2069	0	2072	788	0	2860	4929	0	0	0	0	0	760	0	74	0	834	834	5763

Equivalent 12 \& 24-hour Vehicle Volumes Including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count
\Rightarrow Expansion factors are applied exclusively to standard weekday 8-hour turning movement counts

Equivalent 12-hour vehicle volumes. These volumes are calculated by multiplying the 8-hour totals by the $8 \boldsymbol{\$ 1 2}$ expansion factor of 1.39																							
Equ. 12 Hr	101	2774	0	0	2876	0	2880	1095	0	3975	6851	0	0	0	0	0	1056	0	103	0	1159	1159	8011
Average daily 12-hour vehicle volumes. These volumes are calculated by multiplying the equivalent 12-hour totals by the AADT factor of: 1.0																							
AADT 12-hr	101	2774	0	0	2876	0	2880	1095	0	3975	6851	0	0	0	0	-	1056	0	103	0	1159	1159	8011
24-Hour AADT. These volumes are calculated by multiplying the average daily 12 -hour vehicle volumes by the $12 \boldsymbol{\epsilon} \mathbf{2 4}$ expansion factor of 1.31																							
AADT 24 Hr	133	3635	0	0	3767	0	3773	1435	0	5208	8975	0	0	0	0	0	1384	0	135	0	1519	1519	10494
AM Peak Hour Factor $\Rightarrow 0.89$																							
AM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	TOT	S.TOT	G.TOT
0800-0900	9	341	0	0	350	0	184	117	0	301	651	0	0	0	0	0	109	0	9	0	118	118	769
PM Peak Hour Factor $\Rightarrow 0.94$																							
PM Peak Hr	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.TOT	LT	ST	RT	UT	TOT	LT	ST	RT	UT	тот	S.tot	G.TOT
1600-1700	8	237	0	0	245	0	432	127	0	559	804	0	0	0	0	0	135	0	12	0	147	147	951
Comments																							
Many of the	avy	ehicl	trav	ling	eastb	nd	nd w	stbo	d on	Fernb	mank R	ad	dum	tru	s in	olved	in snow	rem	val	ctivit			

Notes:

1. Includes all vehicle types except bicycles and electric scooters.
2. Expansion factors are not applied to turning movement counts if they are less than 8-hours in duration.
3. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Disclaimer:

[^1]
Appendix E

Existing Conditions Analysis

MOVEMENT SUMMARY

Site: Robert Grant at Cope - Existing AM

Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \text { \% } \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3 u	U	109	2.0	0.211	5.2	LOS A	0.9	6.7	0.02	0.00	52.9
8	T1	107	2.0	0.211	5.2	LOS A	0.9	6.7	0.02	0.00	47.4
18	R2	16	2.0	0.211	5.2	LOS A	0.9	6.7	0.02	0.00	46.2
Appr		232	2.0	0.211	5.2	LOS A	0.9	6.7	0.02	0.00	49.7
East: Cope Drive											
1	L2	9	2.0	0.016	4.2	LOS A	0.1	0.4	0.31	0.18	46.2
16	R2	5	2.0	0.016	4.2	LOS A	0.1	0.4	0.31	0.18	44.6
Appr		14	2.0	0.016	4.2	LOS A	0.1	0.4	0.31	0.18	45.6
North: Robert Grant Avenue											
7	L2	1	2.0	0.114	4.7	LOS A	0.4	3.2	0.24	0.14	48.0
4	T1	110	2.0	0.114	4.7	LOS A	0.4	3.2	0.24	0.14	47.5
Appr		111	2.0	0.114	4.7	LOS A	0.4	3.2	0.24	0.14	47.5
All V		357	2.0	0.211	5.0	LOS A	0.9	6.7	0.10	0.05	48.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Tuesday, May 16, 2017 11:39:47 AM
SIDRA INTERSECTION 6.0.22.4722
Project: \IXCCAN57FS01\Data\ISO\476217\1000\DATA\Sidra\Existing\Existing AM.sip6
8000999, PARSONS TRANSPORTATION GROUP, NETWORK / Enterprise

Existing AM
4: Fernbank Road \& Robert Grant Avenue

Splits and Phases: 4: Fernbank Road \& Robert Grant Avenue

MOVEMENT SUMMARY

Site: Robert Grant at Cope - Existing PM

Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles \qquad	Queue Distance \qquad m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
8	T1	110	2.0	0.115	4.3	LOS A	0.4	3.3	0.05	0.01	47.7
18	R2	16	2.0	0.115	4.3	LOS A	0.4	3.3	0.05	0.01	46.4
Appr		126	2.0	0.115	4.3	LOS A	0.4	3.3	0.05	0.01	47.6
East: Cope Drive											
1	L2	9	2.0	0.020	3.8	LOS A	0.1	0.5	0.22	0.10	46.9
16	R2	11	2.0	0.020	3.8	LOS A	0.1	0.5	0.22	0.10	45.2
Appr		20	2.0	0.020	3.8	LOS A	0.1	0.5	0.22	0.10	46.0
North: Robert Grant Avenue											
7	L2	7	2.0	0.109	4.2	LOS A	0.4	3.1	0.05	0.01	48.2
4	T1	112	2.0	0.109	4.2	LOS A	0.4	3.1	0.05	0.01	47.6
Appr		118	2.0	0.109	4.2	LOS A	0.4	3.1	0.05	0.01	47.6
All V		264	2.0	0.115	4.2	LOS A	0.4	3.3	0.06	0.02	47.5

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Processed: Tuesday, May 16, 2017 11:38:23 AM SIDRA INTERSECTION 6.0.22.4722
Project: \IXCCAN57FS01\Data\ISO\476217\1000\DATA\Sidra\Existing\Existing PM.sip6 8000999, PARSONS TRANSPORTATION GROUP, NETWORK / Enterprise

Appendix F

Site Trip Generation

Trip Generation

Total Site Vehicle Trip Generation

Travel Mode	AM Peak (veh/hr)			PM Peak (veh/hr)		
	In	Out	Total	In	Out	Total
Single-Family Detached Housing (NE) Trip Generation	17	53	70	57	34	91
Residential Condominium / Townhouse (NE) Trip Generation	6	32	38	29	15	44
High School (SE) Trip Generation	437	206	643	92	104	196
Elementary School (SW) Trip Generation	126	103	229	38	39	77
Single-Family Detached Housing (NW) Trip Generation	12	35	47	38	23	61
Residential Condominium / Townhouse (NW) Trip Generation	5	24	29	22	12	34
Single-Family Detached Housing (SE) Trip Generation	12	35	47	38	23	61
Residential Condominium / Townhouse (SE) Trip Generation	2	9	11	8	5	13
Single-Family Detached Housing (SW) Trip Generation	25	76	101	83	50	133
Residential Condominium / Townhouse (SW) Trip Generation	12	59	71	56	28	84
Residential Condominium Block (SE) Trip Generation	12	51	63	53	29	82
Single-Family Detached Housing (NE) Pass-by (0\%)	0	0	0	0	0	0
Residential Condominium / Townhouse (NE) Pass-by (0\%)	0	0	0	0	0	0
High School (SE) Pass-by (0\%)	0	0	0	0	0	0
Elementary School (SW) Pass-by (0\%)	0	0	0	0	0	0
Single-Family Detached Housing (NW) Pass-by (0\%)	0	0	0	0	0	0
Residential Condominium / Townhouse (NW) Pass-by (0\%)	0	0	0	0	0	0
Single-Family Detached Housing (SE) Pass-by (0\%)	0	0	0	0	0	0
Residential Condominium / Townhouse (SE) Pass-by (0\%)	0	0	0	0	0	0
Single-Family Detached Housing (SW) Pass-by (0\%)	0	0	0	0	0	0
Residential Condominium / Townhouse (SW) Pass-by (0\%)	0	0	0	0	0	0
Residential Condominium Block (SE) Pass-by (0\%)	0	0	0	0	0	0
Multi-purpose Trips (0\%)	0	0	0	0	0	0
Total 'New' Auto Trips	666	683	1,349	514	362	876

Appendix G

2025 Future Background Analysis

MOVEMENT SUMMARY

Site: Robert Grant at Cope - 2025 FB AM
Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3	L2	11	2.0	0.177	5.3	LOS A	0.7	5.3	0.25	0.14	47.4
8	T1	143	2.0	0.177	5.3	LOS A	0.7	5.3	0.25	0.14	46.9
18	R2	20	2.0	0.177	5.3	LOS A	0.7	5.3	0.25	0.14	45.7
Appr		174	2.0	0.177	5.3	LOS A	0.7	5.3	0.25	0.14	46.8
East: Cope Drive											
1	L2	10	2.0	0.122	5.0	LOS A	0.4	3.4	0.30	0.19	47.4
6	T1	26	2.0	0.122	5.0	LOS A	0.4	3.4	0.30	0.19	46.8
16	R2	77	2.0	0.122	5.0	LOS A	0.4	3.4	0.30	0.19	45.6
Appr		113	2.0	0.122	5.0	LOS A	0.4	3.4	0.30	0.19	46.0
North: Robert Grant Avenue											
7	L2	68	2.0	0.203	5.3	LOS A	0.8	6.3	0.16	0.07	46.6
4	T1	134	2.0	0.203	5.3	LOS A	0.8	6.3	0.16	0.07	46.1
14	R2	11	2.0	0.203	5.3	LOS A	0.8	6.3	0.16	0.07	44.9
Approach		213	2.0	0.203	5.3	LOS A	0.8	6.3	0.16	0.07	46.2
West: Cope Drive											
5	L2	11	2.0	0.059	4.6	LOS A	0.2	1.5	0.32	0.21	47.4
2	T1	30	2.0	0.059	4.6	LOS A	0.2	1.5	0.32	0.21	46.8
12	R2	11	2.0	0.059	4.6	LOS A	0.2	1.5	0.32	0.21	45.6
Appr		52	2.0	0.059	4.6	LOS A	0.2	1.5	0.32	0.21	46.7
All V		552	2.0	0.203	5.2	LOS A	0.8	6.3	0.23	0.13	46.4

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: Robert Grant at Cope - 2025 FB PM
Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3	L2	11	2.0	0.164	5.0	LOS A	0.6	4.9	0.18	0.08	47.6
8	T1	139	2.0	0.164	5.0	LOS A	0.6	4.9	0.18	0.08	47.1
18	R2	20	2.0	0.164	5.0	LOS A	0.6	4.9	0.18	0.08	45.9
Appr		170	2.0	0.164	5.0	LOS A	0.6	4.9	0.18	0.08	47.0
East: Cope Drive											
1	L2	13	2.0	0.071	4.5	LOS A	0.2	1.9	0.28	0.17	47.3
6	T1	10	2.0	0.071	4.5	LOS A	0.2	1.9	0.28	0.17	46.8
16	R2	43	2.0	0.071	4.5	LOS A	0.2	1.9	0.28	0.17	45.5
Appr		66	2.0	0.071	4.5	LOS A	0.2	1.9	0.28	0.17	46.1
North: Robert Grant Avenue											
7	L2	43	2.0	0.192	5.2	LOS A	0.8	5.9	0.13	0.05	47.1
4	T1	150	2.0	0.192	5.2	LOS A	0.8	5.9	0.13	0.05	46.6
14	R2	11	2.0	0.192	5.2	LOS A	0.8	5.9	0.13	0.05	45.4
Approach		204	2.0	0.192	5.2	LOS A	0.8	5.9	0.13	0.05	46.6
West: Cope Drive											
5	L2	11	2.0	0.034	4.4	LOS A	0.1	0.9	0.31	0.19	47.0
2	T1	9	2.0	0.034	4.4	LOS A	0.1	0.9	0.31	0.19	46.5
12	R2	11	2.0	0.034	4.4	LOS A	0.1	0.9	0.31	0.19	45.3
Appr		30	2.0	0.034	4.4	LOS A	0.1	0.9	0.31	0.19	46.2
All V		471	2.0	0.192	5.0	LOS A	0.8	5.9	0.18	0.09	46.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Appendix H

2025 Total Future Analysis

MOVEMENT SUMMARY

Site: Robert Grant at Cope - 2025 FT AM
Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3	L2	11	2.0	0.185	5.6	LOS A	0.7	5.5	0.29	0.18	47.3
8	T1	143	2.0	0.185	5.6	LOS A	0.7	5.5	0.29	0.18	46.8
18	R2	22	2.0	0.185	5.6	LOS A	0.7	5.5	0.29	0.18	45.5
Appro		176	2.0	0.185	5.6	LOS A	0.7	5.5	0.29	0.18	46.6
East: Cope Drive											
1	L2	17	2.0	0.164	5.5	LOS A	0.6	4.7	0.31	0.20	47.0
6	T1	26	2.0	0.164	5.5	LOS A	0.6	4.7	0.31	0.20	46.5
16	R2	109	2.0	0.164	5.5	LOS A	0.6	4.7	0.31	0.20	45.2
Appro		152	2.0	0.164	5.5	LOS A	0.6	4.7	0.31	0.20	45.6
North: Robert Grant Avenue											
7	L2	102	2.0	0.237	5.7	LOS A	1.0	7.7	0.18	0.08	46.1
4	T1	134	2.0	0.237	5.7	LOS A	1.0	7.7	0.18	0.08	45.6
14	R2	11	2.0	0.237	5.7	LOS A	1.0	7.7	0.18	0.08	44.5
Approach		247	2.0	0.237	5.7	LOS A	1.0	7.7	0.18	0.08	45.8
West: Cope Drive											
5	L2	11	2.0	0.061	4.8	LOS A	0.2	1.6	0.35	0.24	47.2
2	T1	30	2.0	0.061	4.8	LOS A	0.2	1.6	0.35	0.24	46.7
12	R2	11	2.0	0.061	4.8	LOS A	0.2	1.6	0.35	0.24	45.5
Appro		52	2.0	0.061	4.8	LOS A	0.2	1.6	0.35	0.24	46.6
All Ve		627	2.0	0.237	5.5	LOS A	1.0	7.7	0.26	0.15	46.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: Rouncey at Cope - 2025 FT AM
New intersection at Rouncey Road and Cope Road
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Rouncey Road											
3	L2	14	2.0	0.382	8.8	LOS A	1.7	13.3	0.47	0.39	45.5
8	T1	248	2.0	0.382	8.8	LOS A	1.7	13.3	0.47	0.39	45.0
18	R2	62	2.0	0.382	8.8	LOS A	1.7	13.3	0.47	0.39	43.9
Appr		324	2.0	0.382	8.8	LOS A	1.7	13.3	0.47	0.39	44.8
East: Cope Drive											
1	L2	70	2.0	0.245	7.2	LOS A	0.9	7.3	0.46	0.39	45.4
6	T1	64	2.0	0.245	7.2	LOS A	0.9	7.3	0.46	0.39	44.9
16	R2	61	2.0	0.245	7.2	LOS A	0.9	7.3	0.46	0.39	43.7
Appr		195	2.0	0.245	7.2	LOS A	0.9	7.3	0.46	0.39	44.7
North: Rouncey Road											
7	L2	105	2.0	0.439	8.9	LOS A	2.3	17.4	0.40	0.27	44.8
4	T1	272	2.0	0.439	8.9	LOS A	2.3	17.4	0.40	0.27	44.3
14	R2	38	2.0	0.439	8.9	LOS A	2.3	17.4	0.40	0.27	43.2
Appr		415	2.0	0.439	8.9	LOS A	2.3	17.4	0.40	0.27	44.4
West: Cope Drive											
5	L2	59	2.0	0.253	8.2	LOS A	0.9	7.3	0.52	0.51	45.0
2	T1	91	2.0	0.253	8.2	LOS A	0.9	7.3	0.52	0.51	44.5
12	R2	26	2.0	0.253	8.2	LOS A	0.9	7.3	0.52	0.51	43.4
Approach		176	2.0	0.253	8.2	LOS A	0.9	7.3	0.52	0.51	44.5
All V		1110	2.0	0.439	8.5	LOS A	2.3	17.4	0.45	0.37	44.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v / c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

2025 Future Total AM
4: Fernbank Road \& Robert Grant Avenue

	4	\rightarrow	4	4		\checkmark		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	\%	\uparrow	4	F	M			
Traffic Volume (veh/h)	70	560	376	150	114	50		
Future Volume (Veh/h)	70	560	376	150	114	50		
Sign Control		Free	Free		Stop			
Grade		0\%	0\%		0\%			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	74	589	396	158	120	53		
Pedestrians								
Lane Width (m)								
Walking Speed (m / s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC , conflicting volume	554				1133	396		
$\mathrm{vC1}$, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu, unblocked vol	554				1133	396		
tC , single (s)	4.1				6.4	6.2		
$\mathrm{tC}, 2$ stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free \%	93				42	92		
cM capacity (veh/h)	1016				208	653		
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1			
Volume Total	74	589	396	158	173			
Volume Left	74	0	0	0	120			
Volume Right	0	0	0	158	53			
cSH	1016	1700	1700	1700	263			
Volume to Capacity	0.07	0.35	0.23	0.09	0.66			
Queue Length 95th (m)	1.8	0.0	0.0	0.0	31.9			
Control Delay (s)	8.8	0.0	0.0	0.0	41.6			
Lane LOS	A				E			
Approach Delay (s)	1.0		0.0		41.6			
Approach LOS					E			
Intersection Summary								
Average Delay			5.6					
Intersection Capacity Utilization			47.7\%		evel of		A	
Analysis Period (min)			15					

MOVEMENT SUMMARY

Site: Robert Grant at Cope - 2025 FT PM
Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3	L2	11	2.0	0.176	5.2	LOS A	0.7	5.3	0.22	0.11	47.5
8	T1	139	2.0	0.176	5.2	LOS A	0.7	5.3	0.22	0.11	47.0
18	R2	27	2.0	0.176	5.2	LOS A	0.7	5.3	0.22	0.11	45.7
Appr		177	2.0	0.176	5.2	LOS A	0.7	5.3	0.22	0.11	46.8
East: Cope Drive											
1	L2	16	2.0	0.091	4.7	LOS A	0.3	2.5	0.28	0.17	47.2
6	T1	10	2.0	0.091	4.7	LOS A	0.3	2.5	0.28	0.17	46.7
16	R2	59	2.0	0.091	4.7	LOS A	0.3	2.5	0.28	0.17	45.4
Appr		85	2.0	0.091	4.7	LOS A	0.3	2.5	0.28	0.17	45.9
North: Robert Grant Avenue											
7	L2	66	2.0	0.215	5.4	LOS A	0.9	6.8	0.14	0.05	46.7
4	T1	150	2.0	0.215	5.4	LOS A	0.9	6.8	0.14	0.05	46.2
14	R2	11	2.0	0.215	5.4	LOS A	0.9	6.8	0.14	0.05	45.0
Appr		227	2.0	0.215	5.4	LOS A	0.9	6.8	0.14	0.05	46.3
West: Cope Drive											
5	L2	11	2.0	0.035	4.5	LOS A	0.1	0.9	0.33	0.21	46.9
2	T1	9	2.0	0.035	4.5	LOS A	0.1	0.9	0.33	0.21	46.4
12	R2	11	2.0	0.035	4.5	LOS A	0.1	0.9	0.33	0.21	45.2
Approach		30	2.0	0.035	4.5	LOS A	0.1	0.9	0.33	0.21	46.1
All V		520	2.0	0.215	5.2	LOS A	0.9	6.8	0.20	0.10	46.4

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: Rouncey at Cope - 2025 FT PM
New intersection at Rouncey Road and Cope Road
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Rouncey Road											
3	L2	21	2.0	0.216	5.8	LOS A	0.9	6.7	0.27	0.15	56.2
8	T1	165	2.0	0.216	5.8	LOS A	0.9	6.7	0.27	0.15	56.1
18	R2	26	2.0	0.216	5.8	LOS A	0.9	6.7	0.27	0.15	54.5
Appr		212	2.0	0.216	5.8	LOS A	0.9	6.7	0.27	0.15	55.9
East: Cope Drive											
1	L2	30	2.0	0.141	5.5	LOS A	0.5	4.0	0.35	0.25	55.7
6	T1	55	2.0	0.141	5.5	LOS A	0.5	4.0	0.35	0.25	55.6
16	R2	38	2.0	0.141	5.5	LOS A	0.5	4.0	0.35	0.25	54.0
Appr		124	2.0	0.141	5.5	LOS A	0.5	4.0	0.35	0.25	55.1
North: Rouncey Road											
7	L2	34	2.0	0.305	6.8	LOS A	1.4	10.5	0.28	0.17	55.2
4	T1	217	2.0	0.305	6.8	LOS A	1.4	10.5	0.28	0.17	55.2
14	R2	50	2.0	0.305	6.8	LOS A	1.4	10.5	0.28	0.17	53.6
Appr		301	2.0	0.305	6.8	LOS A	1.4	10.5	0.28	0.17	54.9
West: Cope Drive											
5	L2	36	2.0	0.112	5.5	LOS A	0.4	3.0	0.38	0.29	55.0
2	T1	43	2.0	0.112	5.5	LOS A	0.4	3.0	0.38	0.29	55.0
12	R2	13	2.0	0.112	5.5	LOS A	0.4	3.0	0.38	0.29	53.5
Approach		92	2.0	0.112	5.5	LOS A	0.4	3.0	0.38	0.29	54.8
All V		729	2.0	0.305	6.1	LOS A	1.4	10.5	0.30	0.19	55.2

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v / c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

	$\stackrel{ }{ }$				\downarrow	\checkmark		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	\%	4	4	F	M			
Traffic Volume (veh/h)	36	454	680	115	85	76		
Future Volume (Veh/h)	36	454	680	115	85	76		
Sign Control		Free	Free		Stop			
Grade		0\%	0\%		0\%			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	38	478	716	121	89	80		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX , platoon unblocked								
vC , conflicting volume	837				1270	716		
$\mathrm{vC1}$, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	837				1270	716		
tC , single (s)	4.1				6.4	6.2		
$\mathrm{tC}, 2$ stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free \%	95				50	81		
cM capacity (veh/h)	797				177	430		
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1			
Volume Total	38	478	716	121	169			
Volume Left	38	0	0	0	89			
Volume Right	0	0	0	121	80			
cSH	797	1700	1700	1700	245			
Volume to Capacity	0.05	0.28	0.42	0.07	0.69			
Queue Length 95th (m)	1.1	0.0	0.0	0.0	34.4			
Control Delay (s)	9.7	0.0	0.0	0.0	47.0			
Lane LOS	A				E			
Approach Delay (s)	0.7		0.0		47.0			
Approach LOS					E			
Intersection Summary								
Average Delay			5.5					
Intersection Capacity Utilization			54.3\%		evel of		A	
Analysis Period (min)			15					

Appendix I

Left-turn Lane Warrant and Traffic Signal Warrant Analysis

Fernbank Road/ Rouncey Road - (peak hour signal warrant)

Fernbank Road/ Rouncey Road - (peak hour signal warrant)

Appendix J

2030 Future Background Analysis

MOVEMENT SUMMARY

Site: Robert Grant at Cope - 2030 FB AM
Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3	L2	11	2.0	0.191	5.5	LOS A	0.7	5.8	0.25	0.14	47.4
8	T1	157	2.0	0.191	5.5	LOS A	0.7	5.8	0.25	0.14	46.8
18	R2	21	2.0	0.191	5.5	LOS A	0.7	5.8	0.25	0.14	45.6
Appr		188	2.0	0.191	5.5	LOS A	0.7	5.8	0.25	0.14	46.7
East: Cope Drive											
1	L2	11	2.0	0.124	5.1	LOS A	0.4	3.5	0.31	0.20	47.3
6	T1	26	2.0	0.124	5.1	LOS A	0.4	3.5	0.31	0.20	46.7
16	R2	77	2.0	0.124	5.1	LOS A	0.4	3.5	0.31	0.20	45.5
Appr		114	2.0	0.124	5.1	LOS A	0.4	3.5	0.31	0.20	45.9
North: Robert Grant Avenue											
7	L2	68	2.0	0.217	5.5	LOS A	0.9	6.9	0.16	0.07	46.6
4	T1	148	2.0	0.217	5.5	LOS A	0.9	6.9	0.16	0.07	46.1
14	R2	11	2.0	0.217	5.5	LOS A	0.9	6.9	0.16	0.07	44.9
Approach		227	2.0	0.217	5.5	LOS A	0.9	6.9	0.16	0.07	46.2
West: Cope Drive											
5	L2	11	2.0	0.060	4.7	LOS A	0.2	1.6	0.33	0.22	47.3
2	T1	30	2.0	0.060	4.7	LOS A	0.2	1.6	0.33	0.22	46.8
12	R2	11	2.0	0.060	4.7	LOS A	0.2	1.6	0.33	0.22	45.6
Appr		52	2.0	0.060	4.7	LOS A	0.2	1.6	0.33	0.22	46.6
All V		582	2.0	0.217	5.3	LOS A	0.9	6.9	0.24	0.13	46.4

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

	$\stackrel{ }{ }$		\leftarrow			\checkmark		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	\uparrow	4	「	M			
Traffic Volume (veh/h)	41	615	412	28	17	11		
Future Volume (Veh/h)	41	615	412	28	17	11		
Sign Control		Free	Free		Stop			
Grade		0\%	0\%		0\%			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	43	647	434	29	18	12		
Pedestrians								
Lane Width (m)								
Walking Speed (m / s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC , conflicting volume	463				1167	434		
$\mathrm{vC1}$, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu , unblocked vol	463				1167	434		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free \%	96				91	98		
cM capacity (veh/h)	1098				206	622		
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1			
Volume Total	43	647	434	29	30			
Volume Left	43	0	0	0	18			
Volume Right	0	0	0	29	12			
cSH	1098	1700	1700	1700	281			
Volume to Capacity	0.04	0.38	0.26	0.02	0.11			
Queue Length 95th (m)	0.9	0.0	0.0	0.0	2.7			
Control Delay (s)	8.4	0.0	0.0	0.0	19.3			
Lane LOS	A				C			
Approach Delay (s)	0.5		0.0		19.3			
Approach LOS					C			
Intersection Summary								
Average Delay			0.8					
Intersection Capacity Utilization			44.2\%		evel of		A	
Analysis Period (min)			15					

MOVEMENT SUMMARY

Site: Robert Grant at Cope - 2030 FB PM
Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3	L2	11	2.0	0.179	5.2	LOS A	0.7	5.4	0.19	0.09	47.6
8	T1	153	2.0	0.179	5.2	LOS A	0.7	5.4	0.19	0.09	47.0
18	R2	21	2.0	0.179	5.2	LOS A	0.7	5.4	0.19	0.09	45.8
Appr		185	2.0	0.179	5.2	LOS A	0.7	5.4	0.19	0.09	46.9
East: Cope Drive											
1	L2	14	2.0	0.074	4.6	LOS A	0.3	2.0	0.29	0.18	47.2
6	T1	10	2.0	0.074	4.6	LOS A	0.3	2.0	0.29	0.18	46.7
16	R2	45	2.0	0.074	4.6	LOS A	0.3	2.0	0.29	0.18	45.5
Appr		68	2.0	0.074	4.6	LOS A	0.3	2.0	0.29	0.18	46.0
North: Robert Grant Avenue											
7	L2	45	2.0	0.206	5.3	LOS A	0.8	6.5	0.14	0.05	47.0
4	T1	163	2.0	0.206	5.3	LOS A	0.8	6.5	0.14	0.05	46.5
14	R2	11	2.0	0.206	5.3	LOS A	0.8	6.5	0.14	0.05	45.3
Approach		218	2.0	0.206	5.3	LOS A	0.8	6.5	0.14	0.05	46.5
West: Cope Drive											
5	L2	11	2.0	0.035	4.4	LOS A	0.1	0.9	0.32	0.20	46.9
2	T1	9	2.0	0.035	4.4	LOS A	0.1	0.9	0.32	0.20	46.4
12	R2	11	2.0	0.035	4.4	LOS A	0.1	0.9	0.32	0.20	45.2
Appr		30	2.0	0.035	4.4	LOS A	0.1	0.9	0.32	0.20	46.2
All V		502	2.0	0.206	5.1	LOS A	0.8	6.5	0.19	0.09	46.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

	\rangle		\leftarrow			\checkmark		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	7	\uparrow	4	「	M			
Traffic Volume (veh/h)	22	499	748	32	36	55		
Future Volume (Veh/h)	22	499	748	32	36	55		
Sign Control		Free	Free		Stop			
Grade		0\%	0\%		0\%			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	23	525	787	34	38	58		
Pedestrians								
Lane Width (m)								
Walking Speed (m / s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC , conflicting volume	821				1358	787		
$\mathrm{vC1}$, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu , unblocked vol	821				1358	787		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free \%	97				76	85		
cM capacity (veh/h)	808				159	392		
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1			
Volume Total	23	525	787	34	96			
Volume Left	23	0	0	0	38			
Volume Right	0	0	0	34	58			
cSH	808	1700	1700	1700	248			
Volume to Capacity	0.03	0.31	0.46	0.02	0.39			
Queue Length 95th (m)	0.7	0.0	0.0	0.0	13.2			
Control Delay (s)	9.6	0.0	0.0	0.0	28.3			
Lane LOS	A				D			
Approach Delay (s)	0.4		0.0		28.3			
Approach LOS					D			
Intersection Summary								
Average Delay			2.0					
Intersection Capacity Utilization			53.9\%		evel of		A	
Analysis Period (min)			15					

Appendix K

2030 Total Future Analysis

| | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |

	4	\rightarrow	\leftarrow	4		\checkmark		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	\%	\uparrow	4	F	M			
Traffic Volume (veh/h)	70	615	412	150	114	50		
Future Volume (Veh/h)	70	615	412	150	114	50		
Sign Control		Free	Free		Stop			
Grade		0\%	0\%		0\%			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	74	647	434	158	120	53		
Pedestrians								
Lane Width (m)								
Walking Speed (m / s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC , conflicting volume	592				1229	434		
$\mathrm{vC1}$, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu, unblocked vol	592				1229	434		
tC , single (s)	4.1				6.4	6.2		
$\mathrm{tC}, 2$ stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free \%	92				34	91		
cM capacity (veh/h)	984				182	622		
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1			
Volume Total	74	647	434	158	173			
Volume Left	74	0	0	0	120			
Volume Right	0	0	0	158	53			
cSH	984	1700	1700	1700	232			
Volume to Capacity	0.08	0.38	0.26	0.09	0.75			
Queue Length 95th (m)	1.9	0.0	0.0	0.0	39.3			
Control Delay (s)	9.0	0.0	0.0	0.0	55.4			
Lane LOS	A				F			
Approach Delay (s)	0.9		0.0		55.4			
Approach LOS					F			
Intersection Summary								
Average Delay			6.9					
Intersection Capacity Utilization			50.7\%		evel of		A	
Analysis Period (min)			15					

	4	\rightarrow	4			\checkmark		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	\%	\uparrow	4	F	M			
Traffic Volume (veh/h)	36	499	748	115	85	76		
Future Volume (Veh/h)	36	499	748	115	85	76		
Sign Control		Free	Free		Stop			
Grade		0\%	0\%		0\%			
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Hourly flow rate (vph)	38	525	787	121	89	80		
Pedestrians								
Lane Width (m)								
Walking Speed (m / s)								
Percent Blockage								
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC , conflicting volume	908				1388	787		
$\mathrm{vC1}$, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu, unblocked vol	908				1388	787		
tC , single (s)	4.1				6.4	6.2		
$\mathrm{tC}, 2$ stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free \%	95				40	80		
cM capacity (veh/h)	750				149	392		
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1			
Volume Total	38	525	787	121	169			
Volume Left	38	0	0	0	89			
Volume Right	0	0	0	121	80			
cSH	750	1700	1700	1700	211			
Volume to Capacity	0.05	0.31	0.46	0.07	0.80			
Queue Length 95th (m)	1.2	0.0	0.0	0.0	43.7			
Control Delay (s)	10.1	0.0	0.0	0.0	67.4			
Lane LOS	B				F			
Approach Delay (s)	0.7		0.0		67.4			
Approach LOS					F			
Intersection Summary								
Average Delay			7.2					
Intersection Capacity Utilization			58.1\%		evel of		B	
Analysis Period (min)			15					

MOVEMENT SUMMARY

Site: Robert Grant at Cope - 2030 FT AM
Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3	L2	11	2.0	0.200	5.7	LOS A	0.8	6.0	0.30	0.19	47.2
8	T1	157	2.0	0.200	5.7	LOS A	0.8	6.0	0.30	0.19	46.7
18	R2	23	2.0	0.200	5.7	LOS A	0.8	6.0	0.30	0.19	45.5
Appr		190	2.0	0.200	5.7	LOS A	0.8	6.0	0.30	0.19	46.6
East: Cope Drive											
1	L2	18	2.0	0.167	5.5	LOS A	0.6	4.8	0.32	0.22	46.9
6	T1	26	2.0	0.167	5.5	LOS A	0.6	4.8	0.32	0.22	46.4
16	R2	109	2.0	0.167	5.5	LOS A	0.6	4.8	0.32	0.22	45.2
Appr		153	2.0	0.167	5.5	LOS A	0.6	4.8	0.32	0.22	45.6
North: Robert Grant Avenue											
7	L2	102	2.0	0.251	5.9	LOS A	1.1	8.2	0.19	0.08	46.1
4	T1	148	2.0	0.251	5.9	LOS A	1.1	8.2	0.19	0.08	45.6
14	R2	11	2.0	0.251	5.9	LOS A	1.1	8.2	0.19	0.08	44.5
Appr		261	2.0	0.251	5.9	LOS A	1.1	8.2	0.19	0.08	45.8
West: Cope Drive											
5	L2	11	2.0	0.062	4.9	LOS A	0.2	1.6	0.36	0.26	47.2
2	T1	30	2.0	0.062	4.9	LOS A	0.2	1.6	0.36	0.26	46.7
12	R2	11	2.0	0.062	4.9	LOS A	0.2	1.6	0.36	0.26	45.4
Approach		52	2.0	0.062	4.9	LOS A	0.2	1.6	0.36	0.26	46.5
All Ve		657	2.0	0.251	5.7	LOS A	1.1	8.2	0.26	0.16	46.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: Robert Grant at Cope - 2030 FT PM
Roundabout with 1-lane approaches and circulating road, and an extra turn lane
MUTCD (FHWA 2009) example number: 3C-3
Roundabout Guide (TRB 2010) example number: A-2
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Robert Grant Avenue											
3	L2	11	2.0	0.191	5.4	LOS A	0.8	5.8	0.22	0.12	47.4
8	T1	153	2.0	0.191	5.4	LOS A	0.8	5.8	0.22	0.12	46.9
18	R2	28	2.0	0.191	5.4	LOS A	0.8	5.8	0.22	0.12	45.7
Appr		192	2.0	0.191	5.4	LOS A	0.8	5.8	0.22	0.12	46.7
East: Cope Drive											
1	L2	17	2.0	0.095	4.8	LOS A	0.3	2.6	0.30	0.19	47.1
6	T1	10	2.0	0.095	4.8	LOS A	0.3	2.6	0.30	0.19	46.6
16	R2	60	2.0	0.095	4.8	LOS A	0.3	2.6	0.30	0.19	45.4
Appr		87	2.0	0.095	4.8	LOS A	0.3	2.6	0.30	0.19	45.8
North: Robert Grant Avenue											
7	L2	67	2.0	0.228	5.5	LOS A	0.9	7.3	0.15	0.06	46.6
4	T1	163	2.0	0.228	5.5	LOS A	0.9	7.3	0.15	0.06	46.1
14	R2	11	2.0	0.228	5.5	LOS A	0.9	7.3	0.15	0.06	44.9
Approach		241	2.0	0.228	5.5	LOS A	0.9	7.3	0.15	0.06	46.2
West: Cope Drive											
5	L2	11	2.0	0.036	4.5	LOS A	0.1	0.9	0.34	0.22	46.9
2	T1	9	2.0	0.036	4.5	LOS A	0.1	0.9	0.34	0.22	46.3
12	R2	11	2.0	0.036	4.5	LOS A	0.1	0.9	0.34	0.22	45.1
Appr		30	2.0	0.036	4.5	LOS A	0.1	0.9	0.34	0.22	46.1
All V		551	2.0	0.228	5.3	LOS A	0.9	7.3	0.21	0.11	46.3

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: Rouncey at Cope - 2030 FT AM
New intersection at Rouncey Road and Cope Road
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dem Total veh/h	$\begin{gathered} \hline \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km / h
South: Rouncey Road											
3	L2	14	2.0	0.382	8.8	LOS A	1.7	13.3	0.47	0.39	45.5
8	T1	248	2.0	0.382	8.8	LOS A	1.7	13.3	0.47	0.39	45.0
18	R2	62	2.0	0.382	8.8	LOS A	1.7	13.3	0.47	0.39	43.9
Appr		324	2.0	0.382	8.8	LOS A	1.7	13.3	0.47	0.39	44.8
East: Cope Drive											
1	L2	70	2.0	0.245	7.2	LOS A	0.9	7.3	0.46	0.39	45.4
6	T1	64	2.0	0.245	7.2	LOS A	0.9	7.3	0.46	0.39	44.9
16	R2	61	2.0	0.245	7.2	LOS A	0.9	7.3	0.46	0.39	43.7
Appr		195	2.0	0.245	7.2	LOS A	0.9	7.3	0.46	0.39	44.7
North: Rouncey Road											
7	L2	105	2.0	0.439	8.9	LOS A	2.3	17.4	0.40	0.27	44.8
4	T1	272	2.0	0.439	8.9	LOS A	2.3	17.4	0.40	0.27	44.3
14	R2	38	2.0	0.439	8.9	LOS A	2.3	17.4	0.40	0.27	43.2
Appr		415	2.0	0.439	8.9	LOS A	2.3	17.4	0.40	0.27	44.4
West: Cope Drive											
5	L2	59	2.0	0.253	8.2	LOS A	0.9	7.3	0.52	0.51	45.0
2	T1	91	2.0	0.253	8.2	LOS A	0.9	7.3	0.52	0.51	44.5
12	R2	26	2.0	0.253	8.2	LOS A	0.9	7.3	0.52	0.51	43.4
Approach		176	2.0	0.253	8.2	LOS A	0.9	7.3	0.52	0.51	44.5
All Vehicles		1110	2.0	0.439	8.5	LOS A	2.3	17.4	0.45	0.37	44.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v / c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

MOVEMENT SUMMARY

Site: Rouncey at Cope - 2030 FT PM
New intersection at Rouncey Road and Cope Road
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Rouncey Road											
3	L2	21	2.0	0.216	5.8	LOS A	0.9	6.7	0.27	0.15	47.1
8	T1	165	2.0	0.216	5.8	LOS A	0.9	6.7	0.27	0.15	46.5
18	R2	26	2.0	0.216	5.8	LOS A	0.9	6.7	0.27	0.15	45.3
Appr		212	2.0	0.216	5.8	LOS A	0.9	6.7	0.27	0.15	46.4
East: Cope Drive											
1	L2	30	2.0	0.141	5.5	LOS A	0.5	4.0	0.35	0.25	46.7
6	T1	55	2.0	0.141	5.5	LOS A	0.5	4.0	0.35	0.25	46.2
16	R2	38	2.0	0.141	5.5	LOS A	0.5	4.0	0.35	0.25	45.0
Appr		124	2.0	0.141	5.5	LOS A	0.5	4.0	0.35	0.25	45.9
North: Rouncey Road											
7	L2	34	2.0	0.305	6.8	LOS A	1.4	10.5	0.28	0.17	46.4
4	T1	217	2.0	0.305	6.8	LOS A	1.4	10.5	0.28	0.17	45.9
14	R2	50	2.0	0.305	6.8	LOS A	1.4	10.5	0.28	0.17	44.7
Appr		301	2.0	0.305	6.8	LOS A	1.4	10.5	0.28	0.17	45.8
West: Cope Drive											
5	L2	36	2.0	0.112	5.5	LOS A	0.4	3.0	0.38	0.29	46.3
2	T1	43	2.0	0.112	5.5	LOS A	0.4	3.0	0.38	0.29	45.8
12	R2	13	2.0	0.112	5.5	LOS A	0.4	3.0	0.38	0.29	44.6
Approach		92	2.0	0.112	5.5	LOS A	0.4	3.0	0.38	0.29	45.8
All V		729	2.0	0.305	6.1	LOS A	1.4	10.5	0.30	0.19	46.0

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v / c not used as specified in HCM 2010). Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

[^0]: The information contained in this data summary is for information purposes only, and may not apply to your situation. Every effort is made to ensure the traffic count information is accurate for the survey date provided on the summary and flow diagram forms. The author, publisher, and distributor provide no warranty about the content or accuracy of either the data summary or flow diagrams. Information provided is subjective. The author, publisher, and distributor shall not be liable for any loss of profit or any other commercial damages resulting from use of this data.

[^1]:
 publisher, and distributor shall not be liable for any loss of profit or any other commercial damages resulting from use of this data.

